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1. What are your best estimates? Are you close? 

a. Estimation:  What are your best estimates (of the unknown parameters)? 

i. Covered in the Estimation review, where the emphasis was on linear and unbiased 
estimators (LUEs) and BLUE (minimum variance in the class of LUEs) 

ii. So far, we have made no assumptions about the specific distributions of random 
variables.  We have just assumed they had well-defined means and variances, and that 
sampling was independent. 

b. Inference:  Are you sure/close? 

i. Now we tackle Inference, and attempt to develop a sense of how close our parameter 
estimates are to the true underlying parameters.  Unfortunately we can at best make 
only probabilistic statements.  Our focus will be on the two main tools of inference:  
Confidence Intervals and Hypothesis Testing. 

ii. Confidence Intervals  
1. Confidence intervals provide an interval estimate of the true parameter value. 

2. Some high percent (95%?) of the interval estimates generated in some fashion 
(using an interval estimator, of course) will in fact contain the true unknown 
parameter value. 

3. But is the true parameter contained in the specific interval you are looking at?  No 
idea!... though we do know that some high percent (95%?) of the interval 
estimates generated in some fashion … .   

4. And so we have some confidence about something… but what? 
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iii. Hypothesis Testing 
1. Is the true (unknown) parameter zero?  (other hypotheses can be tested… but 

overwhelmingly, this is the one we focus on) 

2. Spoze that your point estimate is very very far from zero.  It sure looks like the 
true parameter values isn't zero.  But maybe you just had a really wacky 
unrepresentative sample, and the true underlying parameter was in fact zero.  That 
is always a possibility… but is it probable?  What's the probability that you would 
have seen the data/estimate that you saw being generated by a distribution with a 
zero parameter.  Not high, you say?  Well is it smaller than 10%? … than 5%? … 
than 1%?   

3. If the probability of seeing what you saw when the true parameter was zero is less 
than say 5%, then we reject the Null Hypothesis that the true parameter is zero at 
the 5% significance level, and we say our estimate is statistically significant at 
that level.  We could be wrong… but that is not at all likely! 

4. The significance level is the maximum probability of making a judgement error of 
this sort (of concluding that that the true 
parameter is not zero, when in fact it is).  And 
while we always have to allow for that 
possibility… we want the probability to be so 
so small…  like less than 10%, … or 5%, … 
or even 1%. 

iv. Distributional assumptions 

1. To do Inference, construct Confidence 
Intervals and conduct Hypothesis Tests, we 
need to make assumptions about the specific 
distributions of the random variables that we 
are working with. 

a. This was not necessary for estimation, 
where we made no distributional 
assumptions in showing that the Sample 
Mean was BLUE. 

2. We typically assume Normal distributions.  
You can of course work with other 
distributions… but you have to start 
somewhere, and why not begin with an 
assumption of Normality? 

 

As in our review of estimation, this review is built around what is probably the best known 
estimation example, estimating the mean of a distribution with randomly sampled data drawn 
from that unknown distribution. 

The goal here is to keep things short and to focus on what is most important with regards to 
inference in SLR and MLR analysis.  If you want more detail:  Take a stats course! 
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2. Estimating the Population Mean, cont'd:  Let's return  to estimating the mean of the 
distribution of Y: 

a. As before, you have an iid random sample { }1 2, , nY Y Y  from the distribution of Y, and 

you are using the sample mean, 1
iY Y

n
= ∑ , to estimate the unknown mean of the 

distribution, µ .1   

b. You already know that ( ) ( )
2

,E Y and Var Y
n
σµ= = , where 2σ  is the variance of Y.  

But since we've made no distributional assumptions yet, the particular nature of the 

distribution of Y (or of 1
iY Y

n
= ∑ ) is as yet unknown.  But that will change shortly…  

as in Right Now! 

3. Assume a Normal distribution 

Assume that Y is Normally distributed, so that Y  (and the 'iY s ) are all 2( , )µ σΝ . 

a. Since 'iY s  are all 2( , )µ σΝ and the samples are independent, 2( , )iY n nµ σΝ∑  , and so 
21 ( , )iY Y

n n
σµ= Ν∑   …  

the sample mean is Normally distributed, with mean µ , variance 
2

n
σ , and standard 

deviation sd
n
σ

= .2 

b. Put differently, 
/

Y YZ
sdn

µ µ
σ

− −
= =  has the standard Normal distribution.  It's Normally 

distributed with mean 0 and variance 1… or as we sometimes say, ~ (0,1)Z N . 

4. Confidence Intervals I:  known variance 2σ  

a. We start by considering the case in which the variance of Y, 2σ , is known… but for some 
reason, its mean µ  is unknown.  This case is highly unrealistic (who would ever know 
the variance without knowing the mean?)… but it serves a useful pedagogic purpose. 

b. Further, we will focus on so called symmetric confidence intervals.  They don’t have to 
be symmetric, of course…  but the symmetric case is easier to work through. 

c. Here's a symmetric (confidence) interval estimator:  ,Y c Y c
n n
σ σ 

− + 
 

, where 0c ≥  

is some pre-specified critical value.   

                                                 
1 Why use the Sample Mean?  … well because it’s a BLUE estimator, of course. 
2 Recall that sums of independent Normally distributed random variables will also be Normally distributed. 
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i. The only random component in this interval estimator is Y , since n and the variance 
2σ  are known, and c is pre-specified.  The interval will shift around depending on Y , 

the Sample Mean around which it is centered, and with a constant width of 2 .c
n
σ   

In words:  The Confidence Interval is the Sample Mean, a random variable, plus or 
minus c standard deviations (of Y ). 

ii. The probability that this random interval estimator contains the unknown mean µ  is:

,prob Y c Y c prob Y c
n n n
σ σ σµ µ

      
∈ − + = ∈ ±      
      

, which after some algebra 

can be re-expressed as
/

Yprob c c
n
µ

σ
 −
− ≤ ≤ 
 

.   

iii. But since ~ (0,1)
/

Y Z N
n
µ

σ
−

= , this is just ( )(0,1)prob c N c− ≤ ≤ .  For a given level 

of confidence, this allows us to set the critical value c: 

 

 
 

d. Some confidence levels and (symmetric) interval estimators: 

i. 90% Confidence Interval:   1.64Y
n
σ 

± 
 

 

ii. 95% Confidence Interval:   1.96Y
n
σ 

± 
 

 

e. As you can see, a good rule of thumb is that 
the 95% confidence interval is the Sample 
Mean plus or minus two standard deviations. 

 
  

critical val. c p(-c<Z<c) p(-c<Z<c) critical val. c
1.5 86.6% 89% 1.60             
1.6 89.0% 90% 1.64             
1.7 91.1% 91% 1.70             
1.8 92.8% 92% 1.75             
1.9 94.3% 93% 1.81             

2 95.4% 94% 1.88             
2.1 96.4% 95% 1.96             
2.2 97.2% 96% 2.05             
2.3 97.9% 97% 2.17             
2.4 98.4% 98% 2.33             
2.5 98.8% 99% 2.58             
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5. Confidence Intervals II:  unknown variance 2σ  (the much more realistic scenario) 

a. If the variance of Y is unknown, then we don’t know the standard deviation of the 

estimator,  sd
n
σ

=  .  But we can compute the sample variance of the sample, 

2 21 ( )
1Y iS Y Y

n
= −

− ∑ , which is an unbiased estimator of 2σ . 

b. And so 
2
YS
n

 will be an unbiased estimator of the variance of the Sample Mean estimator: 

( )
2

Var Y
n
σ

= . 

c. Taking the square root, we have YS
n

 as an estimator of 

the standard deviation of Y .  We call YSse
n

=  the 

standard error (se) of the sample mean… it's an 

estimate of sd
n
σ

= , the standard deviation of the 

(Sample Mean) estimator. 

d. Again:  The standard error is an approximation to the 
standard deviation of the Sample Mean estimator. 

6.  t Distributions and Standard Errors 
a. If Y is normally distributed, then as before 

(0,1)
/

Y Y N
sdn

µ µ
σ

− −
=  , and replacing/estimating σ  

with ,YS we have the estimator 
/Y

Y
S n

µ− . 

b. This estimator will have a t distribution with n-1 

degrees of freedom.  So 1/ n
Y

Y t
S n

µ
−

−
 .   

c. The Student's t distribution was developed by William Sealy Gosset. in the early 1900's.  
At that time he was an employee (chemist and statistician) of Arthur Guinness & Son, the 
brewery in Dublin, Ireland.  A brief bit of history from Wikipedia:3 

Gosset applied his statistical knowledge – both in the brewery and on the farm – to the selection of 
the best yielding varieties of barley. Gosset acquired that knowledge by study, by trial and error, 
and by spending two terms in 1906–1907 in the biometrical laboratory of Karl Pearson. Gosset 
and Pearson had a good relationship. … 

                                                 
3 https://en.wikipedia.org/wiki/William_Sealy_Gosset  

https://en.wikipedia.org/wiki/William_Sealy_Gosset
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Another researcher at Guinness had previously published a paper containing trade secrets of the 
Guinness brewery. To prevent further disclosure of confidential information, Guinness prohibited 
its employees from publishing any papers regardless of the contained information. However, after 
pleading with the brewery and explaining that his mathematical and philosophical conclusions 
were of no possible practical use to competing brewers, he was allowed to publish them, but under 
a pseudonym ("Student"), to avoid difficulties with the rest of the staff. Thus his most noteworthy 
achievement is now called Student's, rather than Gosset's, t-distribution. … 

It was, however, not Pearson but Ronald A. Fisher who appreciated the importance of Gosset's 
small-sample work, after Gosset had written to him to say I am sending you a copy of Student's 
Tables as you are the only man that's ever likely to use them!. Fisher believed that Gosset had 
effected a "logical revolution". Fisher introduced a new form of Student's statistic, denoted t. …  
The t-form was adopted because it fit in with Fisher's theory of degrees of freedom. Fisher was 
also responsible for applications of the t-distribution to regression analysis. … 

Gosset was a friend of both Pearson and Fisher, a noteworthy achievement, for each had a massive 
ego and a loathing for the other. He was a modest man who once cut short an admirer with this 
comment: "Fisher would have discovered it all anyway." 

d. Here are the density functions for three t distributions, with dof’s = 1, 5 and 99.  Notice 
that the density function is symmetric and bell-shaped, and centered around 0.  As the 
dofs increase, probability shifts from the tails to the middle of the distribution.  In the 
limit, and as dofs approach infinity, the t distribution approaches (0,1)N .4 

 
 

7. The t statistic 

a. 
/Y

Y
S n

µ−  is sometimes called the t-statistic, and it drives inference (when using the 

Sample Mean to estimate the unknown mean, and the variance is unknown). 

b. Worth repeating!  The t statistic drives inference!... and, Surprise!...  it has a t 
distribution with n-1 dofs. 

                                                 
4 Sometimes we say that the t-distribution has fatter tails than the Standard Normal distribution. 
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8. Critical values and symmetric confidence intervals 
a. To derive Confidence Intervals for the case of now unknown variance 2σ , we proceed as 

above… the only difference being that we are now working with the t distribution (rather 
than the Normal distribution), and working with the standard error of Y (rather than its 
now unknown standard deviation).  

b. Here's a symmetric (confidence) interval estimator (the Sample Mean plus or minus c 
standard errors):   

,Y YS SY c Y c
n n

 
− + 

 
 or YSY c

n
 

± 
 

 

where 0c ≥  is some pre-specified "critical" value, determined, as described below, using 
the t distribution with n-1 dofs. 

i. As before, and after some algebra, 

,
/

Y YS S Yprob Y c Y c prob c c
n n n

µµ
σ

   − 
∈ − + = − ≤ ≤    
    

( )1nprob c t c−= − ≤ ≤ , 

where 1nt −  is a t distribution with n-1 
dofs. 

ii. For a given level of confidence, and 
given numbers of dofs, we set the 
critical value c using the 1nt −  
distribution. 

iii. 90% Confidence Interval 

1. Degrees of freedom - 25:

1.71 YSY
n

 
± 

 
 

2. Degrees of freedom – infinite, N(0,1): 1.64 YSY
n

 
± 

 
 

iv. 95% Confidence Interval 

1. Degrees of freedom - 25:   2.06 YSY
n

 
± 

 
 

2. Degrees of freedom – infinite, N(0,1):   1.96 YSY
n

 
± 

 
 

c. A good rule of thumb:  For a 95% confidence interval, use the sample mean ±  a couple 
standard errors.  It's not going to be precisely correct, but it's an easy and altogether not-
that-bad approximation.  And you can use the same rule when you get to SLR and MLR 
analyses. 

 

dofs 90.0% 92.5% 95.0% 97.5% 99.0%
5 2.02  2.24  2.57  3.16  4.03  

10 1.81  1.99  2.23  2.63  3.17  
15 1.75  1.91  2.13  2.49  2.95  
20 1.72  1.88  2.09  2.42  2.85  
25 1.71  1.86  2.06  2.38  2.79  
30 1.70  1.84  2.04  2.36  2.75  
50 1.68  1.82  2.01  2.31  2.68  
75 1.67  1.81  1.99  2.29  2.64  

100 1.66  1.80  1.98  2.28  2.63  

infinite 1.64  1.78  1.96  2.24  2.58  
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9. Hypothesis testing: Getting started 

a. Null and Alternative Hypotheses 

• H0:  the Null Hypothesis (the hypothesis we 
are testing)  

• H1:  the Alternative Hypothesis, the alternative 
to H0 

b. Overwhelmingly, the Null Hypothesis we will be 
focusing on is:   

H0:  The true parameter value is 0   
c. Two types of Error:   

• Type I – False Rejection:   

Rejecting the Null, H0, (and accepting the Alternative, H1) when H0 is true 

• Type II – False Acceptance:   

Accepting the Null, H0, (and rejecting the Alternative, H1) when H0 is false 

d. We generally focus on Type I error and protect the Null hypothesis… only rejecting the 
Null hypothesis in the face of overwhelming evidence to the contrary… where, for 
example, the probability of being wrong (incorrectly rejecting the Null) is very small… 
≤  10%, … ≤  5%, or … ≤  1%, or… .  So while mistakes may happen, their probability 
will be small small small.   

e. Significance levels (α ): 

We call these probabilities significance levels, and typically denote them with α .  They 
are the maximum acceptable probability of a Type I error = P(Reject H0 | H0 is true) 

i. Where do significance levels come from?  We make them up! 
10. Continuing with our example:  Sampling from a Normal distribution with unknown variance, 

and testing  0 : 0H µ =   (far and away the most common hypothesis test). 

a. As before, we randomly sample n times (iid) from 2( , )Y µ σΝ , and use the Sample 
Mean (Y ) to estimate the true mean, µ .  Why the Sample Mean?  Well, because it’s 
BLUE, of course. 

b. Consider again the t-statistic:  
/Y

Y
S n

µ−  .  The numerator, Y µ− , tells you how far the 

sample mean, Y , is from the true mean, µ .  Dividing by YSse
n

= , expresses that 

difference in units of standard errors, which provides for greater comparability.  So the t 
statistic tells you how many standard errors the sample mean is from the true mean µ . 

i. Note that the sign of the t-statistic will depend on the estimated mean, so t statistics 
can be positive or negative. 
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c. Under the Null Hypothesis ( 0 : 0H µ = ), 0µ =  and the t statistic,
/Y

Yt stat
S n

= , has a t 

distribution with n-1 degrees of freedom.  As before, we express this as 1/ n
Y

Y t
S n −  . 

i. This is the t-stat under the Null Hypothesis ( 0 : 0H µ = ).  (Notice that I did not call it 
a t statistic… if you see or hear the term t stat, unless you know otherwise, it's 
reasonable that there's an underlying assumption that the true parameter value is zero) 

11. Rejection Rule I – t stats and critical values:   

a. Reject if 
/Y

Y c
S n

> … so reject if the t stat is larger in magnitude than some critical 

value 0c > … Or in other words: reject the Null Hypothesis that the true mean is 0 if Y  
is more than c standard errors away from that value, 0. 

b. So reject the Null Hypothesis 

0 : 0H µ =  if 
/Y

Y c
S n

>  or if 

/Y

Y c
S n

< − . 

i. The rejection region consists of two 
tails of the t-distribution… which is 
why this is called a two-tailed test. 

c. The probability of Type I error is the probability of rejecting H0 when it is true.  For this 

test, that probability is 
/Y

Yprob c
S n

 
>  

 
 . 

d. But since 1/ n
Y

Y t
S n −  under the Null Hypothesis, 

( )1/ n
Y

Yprob c prob t c
S n −

 
> = >  

 
 is just the probability that we’re in the tails  of a t 

distribution with n-1 degrees of freedom (below c−   or above c+ ). 
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12. Suppose that we want to select the critical value c so that the probability of falsely rejecting 
the Null hypothesis is 5%α =  (the significance level of the test).  Then because the t-
distribution is symmetric, we want to find *c  such that:  

*

/Y

Yprob c
S n

 
>  

 
( )*

1 .025nprob t c−= > =  (focusing just on the upper tail probability). 

 
 

a. For this critical value, *c , we then reject 0 : 0H µ =  if *t stat c>  or, equivalently, if 

* YSY c
n

> . 

b. With this test, we will falsely reject H0 5% of the time… a low Type I error rate (a small 
risk that we rejected the Null Hypothesis when it was true). 

c. So the test is:  Reject the Null Hypothesis if … 

• the observed sample mean is at least *c  Standard Errors away from 0, or put 
differently,  

• if the t-stat is larger in magnitude than *c ,  

where the particular value of *c  reflects the significance level of the test, α  , and the 
degrees of freedom. 

  

Critical Values for the t and Standard Normal distributions

Degrees of
Freedom

20% 10% 5% 1%
5 1.48 2.02 2.57 4.03

10 1.37 1.81 2.23 3.17
15 1.34 1.75 2.13 2.95
20 1.33 1.72 2.09 2.85
25 1.32 1.71 2.06 2.79
30 1.31 1.7 2.04 2.75
35 1.31 1.69 2.03 2.72
40 1.3 1.68 2.02 2.7
45 1.3 1.68 2.01 2.69
50 1.3 1.68 2.01 2.68

N(0,1) 1.28 1.64 1.96 2.58

Significance Levels (two-tailed test)
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d. Statistical Significance 

• If we can reject the Null Hypothesis 0 : 0H µ =  at, say, the 5% significance level, 
then we say that the estimate is statistically significant at the 5% level (using a two-
tailed test). 

• It makes no sense to talk about statistical significance without referencing the 
significance level.  Common significance levels are 10%, 5%, 1% and .1%.  Where 
do they come from?  We make them up! 

• And remember:  Every estimate is statistically significant at some significance level!  
…  but in some cases, that level is embarrassingly large! 

 

 
 

13. Probability Values … or p values 
a. Probability values (or p values for short) are the maximum significance levels at which 

we can conduct a hypothesis test and fail to reject the Null Hypothesis….  Typically, p 
values are reported for two-tailed tests. 

i. So if the p value is, say .02, then the null hypothesis can be rejected at significance 
levels above 2%, but not at smaller significance levels. 

b. More formally:  Suppose we have a particular sample mean y  and particular standard 

error yS
se

n
= .  Then we can 

determine the p value as the 
probability of being that far or further 
away from 0 under the Null 
Hypothesis that 0µ = :  

( )1nprob t t stat p− > = . 

14. Rejection Rule II – p values and significance levels 

a. We will reject the two-tailed Null Hypothesis that 0µ =  at the significance level α  if 
and only if p α<  (the p-value for the given sample is smaller than the significance level 
for the test): 
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i. From before, we reject the Null hypothesis if the t stat is larger than the critical value.  
So reject if:  

/Y

Yprob c
S n α

 
>  

 
 where cα  is defined by ( )1nprob t cα α− > = . 

ii. But the t stat is larger than the critical value if and only if the p value is less than the 
significance level, so we can equivalently reject if p α< . 

iii. Since small p values ~ large t stats, we reject if:  
/y

yp t stat c
S n αα< ⇔ = >  

15. Equivalence of Rejection Rules:  Example 
a. Here's an example:   

i. In this case *.10, 30 1.7dofs and cα = = = .  So we reject the Null Hypothesis that 
0µ =  if 1.7t stat >  or if .10p value <  .   

ii. Here, 2.2 1.7t stat = >  and .10p value < , since the shaded region to the right of 2.2, 

2
p value , is less than the shaded region to the right of 1.7, 

2
α .  So:  Reject! Reject! 

 
 

b. Accordingly:  p values make hypothesis testing easier, since we don’t need to determine 
critical values.  If we want the Type I Error to be less than 10% in a two-tailed test, then 
we reject the null hypothesis only if the p value is below 10%.  Done! 

c. You’ll discover that Stata gives you the p-values in the regression output… making 
hypothesis testing and the determination of statistical significance a snap! 
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